29,680 research outputs found

    High performance deep packet inspection on multi-core platform

    Get PDF
    Deep packet inspection (DPI) provides the ability to perform quality of service (QoS) and Intrusion Detection on network packets. But since the explosive growth of Internet, performance and scalability issues have been raised due to the gap between network and end-system speeds. This article describles how a desirable DPI system with multi-gigabits throughput and good scalability should be like by exploiting parallelism on network interface card, network stack and user applications. Connection-based parallelism, affinity-based scheduling and lock-free data structure are the main technologies introduced to alleviate the performance and scalability issues. A common DPI application L7-Filter is used as an example to illustrate the applicaiton level parallelism

    From Maxout to Channel-Out: Encoding Information on Sparse Pathways

    Full text link
    Motivated by an important insight from neural science, we propose a new framework for understanding the success of the recently proposed "maxout" networks. The framework is based on encoding information on sparse pathways and recognizing the correct pathway at inference time. Elaborating further on this insight, we propose a novel deep network architecture, called "channel-out" network, which takes a much better advantage of sparse pathway encoding. In channel-out networks, pathways are not only formed a posteriori, but they are also actively selected according to the inference outputs from the lower layers. From a mathematical perspective, channel-out networks can represent a wider class of piece-wise continuous functions, thereby endowing the network with more expressive power than that of maxout networks. We test our channel-out networks on several well-known image classification benchmarks, setting new state-of-the-art performance on CIFAR-100 and STL-10, which represent some of the "harder" image classification benchmarks.Comment: 10 pages including the appendix, 9 figure

    Joint Modeling of Content and Discourse Relations in Dialogues

    Full text link
    We present a joint modeling approach to identify salient discussion points in spoken meetings as well as to label the discourse relations between speaker turns. A variation of our model is also discussed when discourse relations are treated as latent variables. Experimental results on two popular meeting corpora show that our joint model can outperform state-of-the-art approaches for both phrase-based content selection and discourse relation prediction tasks. We also evaluate our model on predicting the consistency among team members' understanding of their group decisions. Classifiers trained with features constructed from our model achieve significant better predictive performance than the state-of-the-art.Comment: Accepted by ACL 2017. 11 page

    Heavy element abundances and massive star formation

    Get PDF
    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen

    A Proposed Fishery Conservation and Management Act for the Republic of China

    Get PDF
    This article has two parts. It begins with the text of the proposed (fishery) act. Following the text is a brief section-by-section analysis of the proposed act

    Nonequilibrium current driven by a step voltage pulse: an exact solution

    Full text link
    One of the most important problems in nanoelectronic device theory is to estimate how fast or how slow a quantum device can turn on/off a current. For an arbitrary noninteracting phase-coherent device scattering region connected to the outside world by leads, we have derived an exact solution for the nonequilibrium, nonlinear, and time-dependent current driven by both up- and down-step pulsed voltages. Our analysis is based on the Keldysh nonequilibrium Green's functions formalism where the electronic structure of the leads as well as the scattering region are treated on an equal footing. A model calculation for a quantum dot with a Lorentzian linewidth function shows that the time-dependent current dynamics display interesting finite-bandwidth effects not captured by the commonly used wideband approximation
    corecore